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Abstract 

Sea level rise affects both coastal development and coastal ecosystems by increasing flooding 
and erosion. The impacts to human infrastructure and ecosystems are often assessed separately, 
when in fact they are highly intertwined. Coastal salt marshes may persist under rising seas by 
migrating landward; however, land management decisions, including armoring coastal 
properties, may prevent this inland migration, essentially squeezing salt marshes between hard 
upland barriers and the rising sea. These land management decisions might significantly affect 
marsh habitat but are not currently accounted for in projections of salt marsh persistence. The 
goal of this study was to examine the interactions between land management and salt marsh 
migration under rising sea level. We developed improved modeling tools that specifically 
account for these interactions to provide more realistic projections of how salt marsh habitat on 
the Georgia coast might evolve in the future. First, we used a detailed census of existing coastal 
armoring to develop a logistic regression equation that estimates the probability of armoring for 
individual coastal parcels. We also simulated future urbanization using the SLEUTH urban 
growth model. These models were both incorporated into the Sea Level Affecting Marshes 
Model (SLAMM) to simulate future marsh migration under sea level rise while accounting for 
urbanization and coastal armoring decisions. We found that sea level rise effects were generally 
larger than the effects of armoring and urbanization on future salt marsh extent. Armoring and 
urbanization did restrict salt marsh migration, especially in already developed areas (e.g. the 
Savannah region). These differences were much smaller for the whole Georgia coast because 
there are (and are projected to remain) large undeveloped areas where uninhibited marsh 
migration is allowed. This research provides a more realistic understanding of the interplay 
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between sea level rise, land management, and salt marsh migration and can inform effective and 
sustainable coastal management. 
 

Detailed description of your research results 

Methods 

This research yielded two major outputs. First, was the development of a logistic regression 
equation that can predict the probability that a coastal parcel will be armored now or in the 
future. The second output was the development of an integrated modeling approach to 
incorporate the effects of armoring and future urbanization on salt marsh migration on the 
Georgia Coast. 
 

Logistic Regression Equation 

Study Area 

The geographical domain of this study is defined within the six counties that comprise the 
Georgia coastline: Camden, Glynn, McIntosh, Liberty, Bryan, and Chatham (Figure 1). The 
Georgia coastline is approximately 100 miles long and includes thirteen barrier islands and nine 
major estuaries. A defining characteristic of the Georgia coastline is its vast expanse of salt 
marshes situated in estuarine environments. In comparison to other U.S. coastlines, the Georgia 
coastline is largely undeveloped. Accordingly, it is home to nearly one-third of all salt marshes 
along the U.S. Atlantic coastline (Wiegert & Freeman, 1990). Previous research has established 
that approximately 92% of Georgia’s estuarine shoreline is solely or dominantly fronted by salt 
marsh and approximately 5% of the shoreline is armored (Alexander, 2016). 
 
This study was performed at the scale of individual land parcels. Parcel boundaries and parcel-
level tax assessor information were provided by the Coastal Regional Commission (CRC) of 
Georgia and referenced 2016 computer assisted mass appraisal (CAMA) data. Using ArcMap 
10.3.1, we specifically identified shoreline parcels for inclusion in our analysis, as these 
landowners are directly facing the decision of whether to armor their shoreline. We defined 
shoreline parcels to be those with dry land (upland) abutting wetland or water habitat. To 
identify shoreline parcels, we first used the National Wetlands Inventory (NWI)—Estuarine and 
Marine Deepwater and the NWI—Estuarine and Marine Wetland Habitats (Cowardin et al., 
1979) to create a polyline delineating the coastal shoreline; these NWI habitats approximately 
encompass areas of salt marsh, brackish marsh, estuarine open water, and open ocean. The 
inland extent of our analysis is bounded by the westernmost extent of either I-95 or U.S. 
Highway 17, as this is the inland extent of the Georgia Coast Armored Shoreline dataset 
coverage. (Alexander, 2010) 
 

Based on visual quality assurance checks on the identification of shoreline parcels, we 
implemented two refinements to our methodology that improved shoreline parcel identification 
for our purposes. The first removed some inland parcels that were included in multi-part parcels 
consisting of fully inland, disconnected polygons in addition to polygons associated with 
shoreline property. The second refinement clipped parcel boundaries to the shoreline polyline so 
that only dry land was included. Upon creation of these new parcel boundaries, we identified 
numerous parcels with little of their original area remaining.  
 
We subsequently classified the shoreline type for each parcel to be either ‘estuarine’ or ‘marine’ 
based on whether the centroid of the parcel was nearer the NWI Estuarine and Marine 
Deepwater sub-classification of E1UBL (Estuarine, Subtidal, Unconsolidated Bottom, Subtidal) 
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or M1UBL (Marine, Subtidal, Unconsolidated Bottom, Subtidal), respectively (Cowardin et al., 
1979). Due to the potential for hard armoring to influence salt marsh habitat and migration, we 
solely included parcels with estuarine shoreline in our analysis. Parcels selected based on the 
above specified criteria represent a census of estuarine shoreline parcels along the Georgia 
coastline.  

 
Figure 1. The study area is defined by estuarine shoreline parcels within the six Georgia coastal 

counties: (A) delineations of each of the six Georgia coastal counties and (B) delineations of 
individual estuarine shoreline parcels where blue and yellow indicate armoring absence and 
presence, respectively. Images were generated in ArcGIS Desktop 10.5 using NASA’s Web-

Enabled Landsat Data (WELD) (DOI: 10.5067/MEaSUREs/WELD/WELDUSYR.001) for (A) 
and USDA 2017 NAIP Digital Ortho Photo Imagery (DOI: 10.5066/F7QN651G) for (B). 

 
Identifying Armored Parcels 

We used a novel, high-resolution dataset (Alexander, 2010; Bulski et al., 2015) to define the 
distribution of hard armored shorelines throughout the estuarine area of Georgia at the parcel 
level. Using aerial imagery from 2006 and 2013, combined with extensive field inspection 
efforts, this dataset identifies the type (bulkhead, revetment, bulkhead and revetment, road 
causeway, other, unknown) and location of hard armoring structures, using coordinates to 
define these features as polylines in a Geographic Information System. The armoring structures 
here have largely been implemented for erosion control purposes, with bulkheads and 
revetments constituting a majority of the armoring structures (>85%) (Alexander, 2010; Bulski 

A 
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et al., 2015). We did not include road causeways in our analysis because we sought to 
understand drivers of shoreline armoring emplaced by landowners at the parcel scale. “Soft” 
armoring approaches such as living shorelines were not considered in this study, as these 
techniques were outside the scope of the research investigation and their current use is rare 
along the Georgia coastline.    
 
Methods for identifying parcels with armored shorelines paralleled the approach used to 
identify shoreline parcels. Armoring polylines were converted into a 1-m grid and then 
converted into points in ArcMap. CAMA parcel boundaries were then overlaid with these points 
and the ‘Near’ function was used to identify the nearest parcel to each point; these parcels were 
coded as being armored.  Visual quality assurance checks on associations between individual 
parcels and armoring structures led us to redefine armored parcels as parcels with an armoring 
length >25% of their shoreline length. Thus, we estimated the armoring and shoreline lengths 
for each parcel based on the number of armoring and shoreline points associated with the 
parcel. We recoded all parcels with an armoring length < 25% of their shoreline length as 
unarmored. 
 

Attribute Selection and Corresponding Data Collection 

Through literature review (Field et al., 2017; Gittman, 2009; Scyphers et al., 2015), application 
of microeconomic behavioral theory (Gopalakrishnan et al., 2016, 2018; Train, 2009), 

consideration of the three components of vulnerability (exposure, adaptive capacity, and 
sensitivity) (IPCC, 2007; KC et al., 2015), and application of local knowledge based on field 
reconnaissance and informal  elicitation of landowner perspectives, we developed a refined list 
of socio-economic and environmental attributes that we hypothesized to be associated with the 
presence or absence of estuarine shoreline hard armoring at the parcel level scale along the 
Georgia coastline (Table 1). For each attribute that we identified, it was necessary for us to 
obtain parcel-level information representing the attribute of interest either directly or indirectly. 
We pursued datasets that provided information for the largest number of parcels along the 
Georgia coastline, and at a scale appropriate for parcel level analysis. We then used descriptor 
variables to numerically or categorically describe each attribute; in some instances, we identified 
several descriptor variables to serve as proxies for complex characteristics. Some descriptor 
variables were directly provided in a dataset at the parcel scale while others required calculation 
and/or manipulation of a dataset in ArcMap. 
 
All estuarine shoreline parcels were assigned a value for each descriptor variable. In some 
instances, this required the value of zero to be assigned to parcels with null or missing values. 
Specifically, the descriptor variables of replacement cost, construction cost, and building area 
were assigned a value of zero if specified as null in the CAMA data provided by the CRC of 
Georgia. We determined this methodology to be appropriate for our analysis because a null 
value indicates an absence of buildings on a parcel, and we are interested in capturing the value 
of buildings on the parcel through these descriptor variables. The descriptor variables for the 
shoreline change attribute were also assigned values of zero when historical shoreline change 
transects did not overlap the original CAMA parcel boundary. The historical shoreline change 
rate dataset documents the historical rate of shoreline change between ca. 1930–2010 at 50 m 
intervals along the shore, and in some instances, locations where historical shoreline change 
rates were assessed occurred outside of the original CAMA parcel boundaries. Historical 
shoreline change rates were evaluated along prominent waterways, leaving parcels abutting 
smaller tidal creeks and marshes at the inland extent of the study area without a measure of 
historical shoreline change. Only limited data were available for smaller creek systems and the 
naturally meandering nature of these creeks (e.g., erosion on one bank balanced by accretion on 



5 
 

the other) makes it impossible to appropriately generalize rates for these systems58. We 
determined that it was most appropriate to estimate the shoreline change values to be zero for 
parcels that were not associated with a historical shoreline change rate after we applied the 
methods specified above (Table 1), as these areas are situated in low energy environments where 
rates of change are low in comparison to ocean front and open fetch settings. We performed 
extensive spot-checking of all descriptor variables, leading us through several iterations of 
refining ArcMap commands and calculations. 
 

Table 1. Attributes and corresponding descriptor variables hypothesized to be 
associated with the presence (+) or absence (-) of hard armoring. 

Attribute and 
Source 

Descriptor 
Variable 

Relationship 
Hypothesis  

Description (methodology used for 
evaluation) 

Distance to 
Shoreline  

Distance to 
Shoreline (m) - 

Shortest distance from the centroid of 
the parcel area to the shoreline polyline 
(Cowardin et al., 1979) 

Elevation  Elevation (m) 

- 

Mean elevation of parcel area relative to 
the North American Vertical Datum of 
1988 (NAVD88) (Hladik & Alber, 2012; 
Hladik & Herbert, 2017) 

Slope  Elevation/ 
Distance 
To Shoreline 

+ 
Ratio of elevation to distance (each 
defined above) 

Parcel Area 
(CRC of Georgia) 

Parcel Area 
(km2) 

+ 
Upland area of the parcel 

Shoreline 
Energy Class 

Indicators for 
Low, Medium, 
and High 
Energy 

+ 

Classification of shoreline energy based 
on shoreline type from the NWI 
classification: 

Shoreline 
Change*  

Minimum 
Historical  
Shoreline 
Change Rate 
(m/year) 

- 

Minimum value of the shoreline change 
rate transects that overlap with the 
original CAMA parcel boundary 
(Jackson, 2015) 

Average 
Historical 
Shoreline 
Change Rate 
(m/year) 

- 

Average value of the shoreline change 
rate transects that overlap with the 
original CAMA parcel boundary 
(Jackson, 2015) 

Maximum 
Historical 
Shoreline 
Change Rate 
(m/year) 

- 

Maximum value of the shoreline change 
rate transects that overlap with the 
original CAMA parcel boundary 

Erosion Rate  
(m/year) + 

Absolute value of the average historical 
shoreline change rate descriptor 
variable for values <0 

Accretion Rate  
(m/year) - 

Value of the average historical shoreline 
change rate descriptor variable for 
values >0 
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Attribute and 
Source 

Descriptor 
Variable 

Relationship 
Hypothesis  

Description (methodology used for 
evaluation) 

Influence of 
Neighboring 
Armor 
(Alexander, 
2010; Bulski et 
al., 2015) 

Neighbor 
Armoring 
(binary) 

+ 
Denotes if a parcel adjoins another 
parcel that has hard armoring (1) or not 
(0) 

Distance to 
Closest 
Armored 
Neighbor (m) 

- 

Distance from the centroid of a parcel 
area to the centroid of the closest 
armored parcel area, other than the 
parcel itself 

Parcel Value 
(CRC of Georgia) 

Replacement 
Cost ($) 

+ 
Replacement cost for buildings on 
parcel 

Construction 
Cost ($) 

+ 
Construction cost for buildings on 
parcel 

Building Area 
(m2) 

+ 
Area of buildings on parcel 

Total Value 
($) 

+ 
Total value of parcel 

Urban 
Classification 
(US Census 
Bureau, 2010) 

Housing Unit 
Density at the 
Block Scale 
(hu/km2) 

+ 

Housing unit count for the block in 
which a parcel is located, divided by the 
area (m2) of that block as given in the 
census data 

Population 
Density at the 
Block Scale 
(ppl/km2) 

+ 

Population count for the block in which 
a parcel is located, divided by the area 
(m2) of that block as given in the census 
data  

Housing Unit 
Density at the 
Block Group 
Scale 
(hu/km2) 

+ 

Housing unit count for the block group 
in which a parcel is located, divided by 
the area (m2) of that block group as 
given in the census data 

Population 
Density at the 
Block Group 
Scale 
(ppl/km2) 

+ 

Population count for the block group in 
which a parcel is located, divided by the 
area (m2) of that block group as given in 
the census data 

*The data source for the shoreline change attribute applies negative numbers to rates of erosion 
and positive numbers to rates of accretion 
 

Logistic Regression Analysis 

We performed logistic regression analysis using Stata 15 (Statacorp, 2017) to probabilistically 
assess the spatial distribution of hard armoring as a function of select descriptor variables 
(Table 1); the logistic regression model estimates can be used to provide a probability of hard 
armoring (0 < p < 1) on a specified parcel. Model development was directed towards capturing 
the influential factors in the individual decision to invest in hard armoring (or purchase 
properties that already had armoring installed). The general form of our model was based on 
conceptual choice theory, as we viewed the probability of installing hard armoring as a function 
of perceived risk and benefit, cost and/or ability to pay, and demographic/social factors, 
including some unobserved effects. Accordingly, we included county-level dummy variables to 
capture unobserved heterogeneity and we clustered standard errors at the county level.  
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Our primary regression model specification includes an indicator for hard armoring on a 
neighbors parcel, geophysical characteristics (distance to the shoreline, elevation, slope, 
shoreline length, parcel area), shoreline change variables (indicators for medium- and high-
energy environments, historical erosion rate), economic characteristics (building value), in 
addition to the county fixed effects. We tested for the influence neighborhood fixed effects 
(when information was available) to control for neighborhood-level hard armoring projects (that 
may be beyond the decisions of individual homeowners). Lastly, we estimated models without 
the neighboring parcel effect, in order to produce results that might be applied to other locations 
(under the expectation that neighboring armor indicator may not always be available).  
  
Final model selection was based primarily on variable influence, interpretability, ease of 
descriptor variable calculation, fidelity to processes supported by theory, and model fit 
diagnostics. Model prediction accuracy is the in-sample prediction success, using a fitted value 
of 50% to predict armoring. To assess out-of-sample prediction and sensitivity to the cutoff 
value for armor prediction, we performed a 10-fold cross-validation and measured the area 
under the “Receiver Operating Characteristic” (ROC) curve to assess sensitivity and specificity. 
Sensitivity is the fraction of positive cases that are correctly classified by the logistic regression 
model, while specificity is the fraction of negative cases that are correctly classified. The ROC 
curve is the plot of sensitivity versus 1-specificity from a 10-fold cross validation, and area under 
the ROC is commonly used as a measure of goodness of fit for out-of-sample prediction 
accuracy. We conducted likelihood ratio tests to assess nested model specifications and used 
Information Criteria for non-nested assessments. Lastly, we tested the final model for spatial 
autocorrelation assuming an inverse-distance weighting matrix. 
 
 
Salt Marsh Migration Modeling 
 
We used the logistic regression model described above to dynamically model the effects of 
coastal armoring, future urban growth, and sea level rise on salt marsh migration and 
persistence on the Georgia coast. This modeling effort involved the dynamic coupling of three 
separate models – logistic regression, SLEUTH urbanization model, and Sea Level Affective 
Marshes Model (SLAMM) for salt marsh migration. We simulated three NOAA sea level rise 
scenarios. 
 
The sea level rise scenarios used in this project come from the 2017 NOAA regional scenarios for 
the Fort Pulaski tide gauge. We evaluated the Intermediate-Low (0.60m/1.97ft from 2000-
2100), Intermediate (1.22m/4.00ft), and Intermediate-High (1.93m/6.33ft) scenarios to cover 
the probable range of outcomes for the next century. Within each sea level rise scenario, we 
examine marsh migration under high and low shoreline armoring intensity scenarios, with and 
without future projected urbanization, and finally with no armoring at all and no protection of 
existing urban land to establish a baseline marsh migration scenario without deliberate human 
interference.  
 
SLAMM serves as the core framework for modeling sea level rise and marsh migration. SLAMM 
simulates sea level rise and the processes of marsh accretion, erosion, and conversion to other 
land covers. The model requires three spatial inputs: a digital elevation model (DEM), land use 
classification raster, and slope (based on the DEM). We used a 10m resolution vegetation-
corrected DEM for the Georgia coast (Herbert, 2015), a land classification raster derived from 
the most recent National Wetlands Inventory (NWI) vector dataset, and a slope raster derived 
from the DEM. Other SLAMM parameters include the global sea level rise scenario to be 
applied, local marsh accretion parameters, and protection scenarios which prohibit designated 
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land cover types from being converted to wetlands. SLAMM can optionally account for local sea 
level rise by extrapolating the difference between historical local and global sea level rise into the 
future, but for this effort it is assumed that local and global sea level rise are equal. We ran 
SLAMM in 10-year increments, while dynamically adjusting the input land cover rasters for each 
timestep to account for areas which are modeled to become newly armored or urbanized, and 
subsequently protecting those areas from wetland conversion in future timesteps. 
 
Shoreline armoring is evaluated at the beginning of each timestep using the logistic regression 
equation described above. Of the 15 total variables, 9 are held constant over time and 6 are 
newly evaluated at the beginning of each timestep. The 6 dynamic variables are: 

1. whether a neighboring parcel is armored [0/1],  
2. the distance from the parcel centroid to the SLAMM-derived shoreline for that timestep 

[m],  
3. the mean parcel elevation from the SLAMM DEM [m above NAVD88],  
4. the slope variable, computed as the quotient of parcel elevation and distance to shoreline 

[m/m],  
5. whether the parcel has a medium-energy shoreline [0/1], and  
6. whether the parcel has a high-energy shoreline [0/1], with shoreline energy 

classifications defined in terms of SLAMM land cover classifications.  

The remaining constant parcel attributes are:  

1. the natural log of the original parcel shoreline length [ln(m)],  
2. the original parcel area after clipping to NWI polygon-derived shoreline [km2],  
3. the average historical erosion rate of the parcel shoreline [m/yr],  
4. the value of any buildings within the parcel [$/m2], and 
5. binary variables based on the county the parcel is in 

 
Parcel shoreline lengths and areas are held constant because they were originally evaluated 
using the boundaries of the polygons produced in the 2006 National Wetlands Inventory, which 
offers a considerably higher degree of precision than the shoreline which must be constructed 
from the SLAMM land cover outputs in subsequent timesteps. The SLAMM-based shoreline can 
be estimated by finding the boundary between dry land and water or wetlands. Because the 
SLAMM shoreline is derived from the SLAMM land cover rasters, which have resolutions of 
10x10 meters, the resulting shoreline is often quite jagged and not well suited for clipping parcel 
boundaries or calculating a new shoreline length. However, the SLAMM-derived shoreline is 
used to evaluate the distance to shoreline parameter (and thus parcel slope, which strongly 
influences armoring probability), in order to model the driving influence of inland marsh 
migration on property owners’ decision to armor. For the edge cases where the SLAMM-derived 
shoreline nearly intersects the parcel centroid, resulting in very high parcel slopes, slope values 
are post-processed such that the maximum permissible value is 95th percentile slope (0.0911 
[m/m]) used to construct the original logistic regression. 
 
The armoring regression equation predicts a probability of armoring for each coastal parcel in 
Georgia. However, these probabilities must then be used to determine whether or not the parcel 
is actually armored.  What constitutes the “right” amount of armoring is open to interpretation, 
and serves as the basis for the different “armoring intensity” scenarios used in this modeling 
effort. The scenarios are constructed by starting with the known armoring rate from 2006-2013, 
which is calculated from the fine-scale armoring census of shoreline armoring structures by 
Clark Alexander et al.. In that dataset of 13,566 parcels, 2,736 were armored as of their 2006 
census, while 3,136 had been armored by 2013, meaning 400 parcels were armored over the 
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course of 7 years. This corresponds to a yearly armoring rate of 0.528%. This is used as the 
armoring rate for the first timestep (2010-2020), and is either reduced or increased by 10% per 
timestep to define the low and high armoring scenarios, respectively. The amount of armoring is 
therefore assumed based on past armoring rates, but the spatial location of armoring is directly 
predicted from the logistic regression equation. As a result, in the low armoring scenario, an 
average of 5884, or 43% of total parcels are armored at some point in the simulation. For the 
high armoring scenario, those numbers are 8452 and 62%, respectively. However, not all of 
these parcels are armored for the duration of the simulation. We have also developed an 
armoring removal equation which is evaluated for each armored parcel each timestep, and is a 
function of mean parcel elevation and weighted by total parcel value.  
 
As the sea level rises, one would assume that there is some threshold at which the effort involved 
in maintaining armoring infrastructure becomes too great, and the armoring is abandoned or 
removed. Due to a lack of rigorous study on the conditions which lead to armoring removal, 
abandonment, and/or dilapidation, a simple elevation-based function is developed to evaluate 
such processes. The function assumes (1) that there is some mean parcel elevation threshold 
above which armoring removal will never be considered, and (2) that there is some other, lower 
mean parcel elevation threshold below which armoring removal is certain. Between the lower 
and upper elevation thresholds, the probability of armoring removal is assumed to decrease 
exponentially, with the rate of exponential decay being proportional to the log-transformed total 
value of the parcel. In other words, a high-value parcel will have a lower probability of armoring 
removal than a low-value parcel at the same elevation. This is intended to represent the greater 
incentive to maintain armoring and resist upland retreat for high-value parcel owners relative to 
low-value parcel owners. However, once the elevation of either a high- or low-value parcel dips 
below the specified lower threshold, armoring removal is certain regardless of parcel value. For 
this modeling effort, the lower elevation threshold is assumed to be equal to mean tide level 
(MTL), and the upper elevation threshold is assumed to be equal to the 30-day inundation 
elevation, which is called the “salt elevation” parameter in SLAMM. These thresholds are equal 
to 0 meters above MTL and 1.311 meters above MTL, respectively. The number of parcels which 
are permitted to un-armor in a given timestep can be restricted in the same manner as the 
number of parcels allowed to become armored, but for this modeling effort armoring removal is 
fully unrestricted. The number of parcels which become un-armored is highly sensitive to the 
sea level rise scenario applied in SLAMM, because SLAMM reduces dry land elevations by an 
amount equal to the amount of global SLR which is modeled to occur. The percentage of 
armored parcels which became unarmored by 2100 were found to be 4.2%, 10.6%, and 16.7% for 
the NOAA Intermediate-Low, Intermediate, and Intermediate-High SLR scenarios, respectively. 
  
Therefore, in each timestep, there is a set of previously-unarmored parcels which become newly 
armored, and a set of previously-armored parcels which become newly unarmored. In the 
former case, pixels which overlap with a newly-armored parcel boundary are converted to 
“developed dry land” in the SLAMM land cover input raster for the current timestep, and are 
subsequently protected. In the latter case, pixels which overlap with a newly-unarmored parcel 
are converted from “developed dry land” to “undeveloped dry land”, meaning that the parcel is 
no longer protected from wetland conversion in future SLAMM timesteps. Moreover, parcels 
which become unarmored are prohibited from becoming armored again in future timesteps. 
  
In addition to new armoring, we also incorporate future projected urbanization using the 
SLEUTH model from Dr. Keith Clarke at the University of California, Santa Barbara. SLEUTH is 
named for its inputs – Slope, Land cover, Exclusion, Urban extent, Transportation, and 
Hillshade. The Slope layer is calculated from a high-resolution 1-m DEM. The Land cover layer 
is optional for the model to run, and is not used. The Exclusion layer represents areas which are 
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prohibited from development during model execution, where a pixel value of 100 means the cell 
cannot be developed and a value of 0 means the cell is available for development. Areas 
corresponding to open water, wetlands, or conservation lands, sourced from the National 
Wetlands Inventory vector dataset, are coded as 100 and completely excluded. Moreover, cells 
which correspond to water or wetlands from the most recent SLAMM output are also coded 100 
and excluded from being developed. Cells can also be partially excluded, as is the case with cells 
corresponding to row crop which are coded as 50, while cells representing pasture land are 
coded as 10, with both being sourced from the 30 meter 2015 Georgia Land Use Trends (GLUT) 
land cover dataset. Roads are sourced from the US Census Bureau TIGER roads vector dataset. 
Finally, the urban extent layer is updated each timestep with the new projected urbanization 
from SLEUTH, assigned using a population projection methodology as described below. 
  
For each timestep, SLEUTH runs and produces a raster with each cell containing a value equal 
to the percentage chance of urbanization, ranging from 0 to 100. The modeler has to choose a 
probability threshold cutoff value such that all cells with probabilities greater than that value are 
coded as urban for the next timestep, and all cells with lower probabilities are not. For this 
modeling effort, we incorporated county-level population projections from the US Census 
Bureau to assign urban probability cutoff values for each county at the end of each SLEUTH 
timestep. Because the Census only provides population projections through 2060, a linear trend 
is extrapolated through 2100 for the six counties in the study region. To determine the 
applicable threshold, it is assumed that the ratio between county population and urban extent 
remains constant through time. Counties which are projected to increase in population will 
experience a corresponding linear increase in urban extent, whereas counties projected to have 
zero or negative population growth experience no change in urban extent. This threshold is 
evaluated and applied to each county at the end of each timestep, and the new urban extent is 
used as both the Urban input layer for the following SLEUTH timestep and also to reclassify new 
urban pixels as “developed dry land” in SLAMM to be protected. 
  
The three models – SLAMM, SLEUTH, and the armoring logistic regression equation – are 
coupled together to dynamically model sea level rise, marsh migration, urbanization, and future 
armoring in 10-year increments from 2010-2100. The order of operations in a given timestep is 
to: 

1. run SLAMM using initial DEM, slope, and land cover 
2. generate the SLAMM shoreline from the previous timestep’s land cover outputs, 
3. evaluate new armoring and unarmoring for the current timestep using the logistic 

regression and SLAMM outputs, and convert newly armored parcels to developed dry 
land, newly unarmored parcels to undeveloped dry land, in SLAMM NWI inputs for the 
current timestep, 

4. convert new urban land from last timestep’s SLEUTH outputs to developed dry land in 
SLAMM NWI inputs,  

5. execute SLAMM with the updated input land cover layers for the current timestep and 
process the outputs,  

6. exclude new water/wetland pixels from SLAMM NWI outputs from being developed in 
SLEUTH,  

7. execute SLEUTH for the current timestep, and  
8. evaluate new urban extent by county using population projection thresholding approach.  
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Results 
Logistic Regression 

We identify 13,209 land parcels along Georgia’s estuarine shoreline for analysis; these parcels 
provide a census of armored and unarmored estuarine shoreline parcels. Chatham County 
comprises the largest number of these parcels (4856, 37%) and Bryan County comprises the 
fewest (955, 7%). In total, we estimate 2,997 parcels to be armored (23%). Chatham County also 
comprises the largest number of armored parcels (1473, 49%), whereas Liberty County 
comprises the fewest (242, 8%). When comparing armoring prevalence among counties, Bryan 
County has the highest percentage of armored parcels, with 37% of all estuarine shoreline 
parcels in Bryan County being armored. In total, we estimate 4,004 parcels (30%) to be adjacent 
to a parcel with existing armoring. 
 
The final selected logistic regression model for describing patterns of hard armoring among 
estuarine shoreline parcels in Georgia includes the predictor variables shown in Figure 2. The 
model suggests that the presence of hard armoring on a neighboring parcels is one of the 
dominant factors in describing patterns of hard armoring. Also important are the historical 
erosion rate, energy level of the shoreline environment, and shoreline slope.  
 
A likelihood ratio test supported the inclusion of neighborhood fixed effects (Chi-square = 
323.476, with 172 degrees of freedom), and this model exhibits a correct classification rate of 
88%. Chatham County is used as the reference for county fixed effects. Structure value appears 
to be best represented by replacement cost per building area, which we term “building value” 
($/m2). The explanatory power of shoreline length is improved by natural logarithm 
transformation. The urban classification descriptor variables (housing and population density) 
had inconsistent associations with armoring throughout model development, as well as small 
marginal effects and minimal influence on classification accuracy; thus, we did not include a 
measure of urban classification in the final model. The final model (Figure 2) indicates that 
eight of ten landscape and socioeconomic attributes selected a priori are strong predictors of the 
log-odds of shoreline armoring (p < 0.1).  
 
We find that parcel slope (elevation/distance from the shore) has the largest effect on the log-
odds probability of hard armoring, with a change in the log-odds value of 3.75 with a marginal 
effect of 0.33. Thus, a one-unit increase in the slope (from an average of 0.025) increases the 
likelihood of armoring by 33%. More telling, however, the elasticity of slope is 0.03, indicating 
that a one-percent increase in slope increases the probability of armoring by only 0.03%.  
Distance from the shoreline, on its own, has a small negative effect on armoring (marginal effect 
of -0.0006), while elevation does not have a statistically significant effect (independent of 
slope). 
 
Also very impactful in the logistic regression model, the “neighbor armoring” coefficient 
indicates a change in the log-odds average value of 2.32 and a marginal effect of 0.18. Thus, 
being located next to an armored parcel increases the likelihood of armoring by 18% (holding all 
other predictor variables constant).  This effect may reflect environmental forcings that are 
common to all parcels in a particular area, spatial spillovers in erosion risk due to installation of 
hard armoring on neighboring properties, or herding behavior (in which landowners adopt 
practices they see their neighbors using). To attempt to control for this, we include indicators for 
medium-energy or high-energy shoreline environments (relative to low-energy) and the 
historical erosion rate. Model results suggest medium-energy environments have no discernable 
impact on armoring, but high-energy shoreline environments increase the likelihood of hard 
armoring by 12%.  A one-unit increase in the historical erosion rate increases the probability of 
armoring by 11%. 
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Other predictor variables exhibited modest effects in the logistic regression model. A one-meter 
increase in shoreline length reduces the log-odds by 0.09 (the likelihood of hard armoring by 
0.0002 – marginal effect not statistically significant). An additional square-meter of parcel area 
increases the log-odds of hard armoring by 0.105, with a marginal effect of 0.009. A one-dollar 
increase in structure replacement cost (per m2) increases the log-odds by 0.0093, with a 
marginal effect of 0.0008. Parcels located in Glynn, Liberty, and Bryan Counties are more likely 
to be armored, controlling for other predictors and neighborhood fixed effects, relative to 
Chatham County, while parcels in McIntosh County are less likely to be armored. Camden 
County was no different from Chatham County (all else being equal). The final model showed no 
evidence of spatial autocorrelation in errors (Moran’s Index = 0.000246, p = 0.8125). 
 

 
Figure 2. Forest plot of the change in the log-odds of the probability to armor resulting from a 
unit increase in the predictor variables included in the logistic regression model. Positive values 

indicate a positive association with hard armoring likelihood and negative values indicate a 
negative association with hard armoring likelihood. Bars are 95% confidence intervals. 

Parameter intervals that overlap zero do not significantly influence the probability of hard 
armoring (at 5% significance level). 

 

Salt Marsh Migration Modeling 

We simulated salt marsh migration and loss under three sea level rise scenarios (0.6m, 1.22m, 
and 1.93m of rise from 2000-2100). We classified salt marshes as both transitional (SLAMM 
code 7) and regularly flooded (SLAMM code 8) marshes, which broadly includes salt marshes 
dominated by Juncus spp. and Spartina spp. There was a net increase in total salt marsh area 
on the Georgia coast for the two lowest SLR scenarios (Figure 3). However, the highest SLR 
scenario showed a net loss in salt marsh area by 2100. This is consistent with other research on 
the Georgia coast that showed that marshes can migrate into new areas, along as the rate of sea 
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level rise is not too high (Herbert, 2015). If sea level rise is too great, the drowning out of new 
marshes greatly exceeds the creation of new marsh habitat. 
 
The results for scenarios with armoring and urbanization effects show similar trends to the 
baseline scenario (unimpeded salt marsh migration). However, the simulations that included 
armoring and urbanization do show less total salt marsh area by 2100 than their baseline 
counterparts. Differences between the baseline and other scenarios is largest for the highest SLR 
scenario. Differences among scenarios which included different amounts of armoring and 
urbanization are relatively small. This suggests that while armoring and urbanization do restrict 
salt marsh migration, the amount of armoring (that we examined at least) does not have much 
of an effect. This relatively small effect of armoring and urbanization is apparent for the whole 
Georgia coast, but there are important regional differences that deserve further exploration. 
 
Much of the Georgia coast is currently undeveloped, and is not expected to experience 
significant urbanization by 2100. Therefore, there are many areas where salt marsh migration 
will be relatively unimpeded as sea levels rise. However, currently developed areas are expected 
to see the most population growth and will therefore experience the greatest effects of shoreline 
armoring and urbanization on salt marsh loss. For example, salt marsh area in the Savannah 
region will be significantly smaller by 2100 when the effects of armoring and urbanization are 
accounted for (Figure 4). At the intermediate-high SLR scenario (1.93m), there will be 57 km2 
less salt marsh habitat in 2100 than there would be if marsh migration was unimpeded (101 km2 
total area compared to 158 km2). 
 
The spatial patterns of these marsh losses are also significant. Figure 5 shows salt marsh gains, 
salt marsh loss, and future salt marsh habitat lost to armoring and urbanization for the whole 
Georgia coast (high armoring + urbanization scenarios). The lowest SLR scenario shows 
relatively little salt marsh loss overall, which is more than offset by new salt marshes moving 
inland. The other two SLR scenarios (Intermediate and Intermediate-High), however, show 
extensive loss of current salt marsh habitat to the west of the barrier islands and even extending 
significantly inland. The effects of armoring and urbanization can clearly be seen in the more 
developed parts of the coast (e.g. Savannah and Brunswick areas). Salt marsh losses and gains 
for the high armoring scenarios with urbanization are shown in Figure 6. Similar to what is seen 
in Figure 5, salt marsh losses overall increase as SLR increases, as does the amount of lost salt 
marsh habitat due to armoring and urbanization. 
 
Examining the Savannah region in more detail shows significant effects of armoring and 
urbanization for all SLR scenarios (Figure 7). There is significant total salt marsh loss in the 
Intermediate and Intermediate-High scenarios, especially towards the east where the marshes 
have the greatest benefits in protecting populated areas for waves and storm surge. The largest 
effects of armoring and urbanization are seen for the Intermediate-High SLR scenario, where 
salt marsh migration is impeded the most on the barrier islands (Skidaway, Tybee, Wilmington 
and Whitemarsh), and along the Savannah River (yellow areas on Figure 7). Figure 8 shows salt 
marsh losses and gains for the high armoring scenarios with urbanization for just the Savannah 
region. Trends are similar for the whole-coast results (Figure 6), but the relative amounts of salt 
marsh loss are much greater. 
 
It is unsurprising that armoring and urbanization have the greatest effects on salt marsh 
migration near developed areas. However, these are also the areas that most benefit from 
healthy salt marshes for wave attenuation, reduced storm surge, and recreation. 
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Figure 3. Salt marsh (transitional and regularly flooded) area over time for the three SLR 
scenarios for the whole Georgia coast. Lines compare the baseline (no urban, nor armor) with 

scenarios including high and low rates or armoring with and without urbanization. 
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Figure 4. Salt marsh (transitional and regularly flooded) area over time for the three SLR 
scenarios for the Savannah region. Lines compare the baseline (no urban, nor armor) with 

scenarios including high and low rates or armoring with and without urbanization. 
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Figure 5. Map of new salt marsh (transitional and regularly flooded) area, lost marsh area, and 

future marsh area lost to armoring and urbanization for the whole Georgia coast for the three 
SLR scenarios. Results are from the high armoring scenarios with urbanization. 
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Figure 6. New salt marsh (transitional and regularly flooded) area, lost marsh area, and future 

marsh area lost to armoring and urbanization for the whole Georgia coast for the three SLR 
scenarios. Results are from the high armoring scenarios with urbanization. 
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Figure 7. Map of new salt marsh (transitional and regularly flooded) area, lost marsh area, and 
future marsh area lost to armoring and urbanization for the Savannah region for the three SLR 

scenarios. Results are from the high armoring scenarios with urbanization. 
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Figure 8. New salt marsh (transitional and regularly flooded) area, lost marsh area, and future 

marsh area lost to armoring and urbanization for the Savannah region for the three SLR 
scenarios. Results are from the high armoring scenarios with urbanization. 

 
 

Potential applications, benefits and impacts of your Sea Grant funded research 
project 

 
The logistic regression model developed as a part of this research has several important 
implications and applications. First, this model can be (and has) be used to predict future 
shoreline armoring on the Georgia coast. This is useful for managers to explore potential future 
scenarios and how armoring extent may vary between them. Furthermore, the most influential 
variables selected in the model can help explain when and where shoreline armoring occurs. The 
neighbor armoring variable had one the largest influences on the probability of armoring – if a 
parcel is adjacent to one that is already armored, the probability of that parcel having hard 
armoring increases by 18%. This neighbor effect could be due to a number of factors: peer-
pressure among neighbors, adjacent armoring potentially increasing erosion on a landowners 
shoreline, or simply the fact that specific areas with higher erosion potential will have lots of 
shoreline armoring. These potential explanations need further research, but understanding that 
armoring tends to occur in clusters is important for management of shoreline properties. 
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The salt marsh migration modeling results suggest that, for the whole Georgia coast, the effects 
of different amounts of sea level rise will be greater than the effects of armoring and 
urbanization. This is partly because there are large undeveloped areas of the coast that are 
expected to remain undeveloped and therefore will provide ample opportunity for salt marshes 
to migrate inland with sea level rise. However, regional results show that currently developed 
areas (e.g. the Savannah region) will experience much larger salt marsh losses overall and 
specifically due to armoring and urbanization effects. This is critical because these developed 
areas are also at highest risk of the negative effects of sea level rise and need the buffering 
benefits that healthy salt marshes can provide. 
 
The results of this research have a number of direct applications and benefits. Not only does this 
research improve our understanding of the coupled effects of sea level rise and land use changes 
on salt marshes, but results can also help coastal managers better manage these complicated 
and intertwined issues. Protecting salt marshes has a number of ecological, social, and economic 
benefits. They are important habitat for aquatic and terrestrial species and directly and 
indirectly support recreational use and tourism. Furthermore, salt marshes are important 
buffers that protect coastal properties from erosion and storm surge. Effectively managing salt 
marsh habitat is important and this research will directly inform this management into the 
future. 
 
The findings of this research will be presented to coastal land managers in November 2020. We 
will also continue to engage with these and other stakeholders to provide relevant results and 
outputs that can help improve future management and protection of important salt marsh 
habitat. This includes sharing data layers to allow stakeholders to analyze local scale impacts of 
hard armoring on salt marsh migration. Furthermore, these data can be used to identify 
potential salt marsh migration pathways that should remain unobstructed and potential areas of 
infrastructure conflict. 
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